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Doxorubicin-dependent skeletal muscle atrophy: exercise and mitochondrial dysfunction
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Gokhan Burcin Kubat™ =, Meltem Tuncer?

Department of Mitochondria and Cellular Research, Giilhane Health Sciences Institute, University of Health Sciences, Ankara, Tirkiye
2Department of Physiology, Faculty of Medicine, Hacettepe University Ankara, Tiirkiye

ABSTRACT

Doxorubicin (DOX) is a type of chemotherapy with harmful side effects due to its accumulation in various tissues. DOX is widely known for having a
significant effect on skeletal muscle atrophy. The most significant of these side effects is DOX-induced mitochondrial dysfunction in skeletal muscle
atrophy. Exercise is a treatment approach that serves to maintain muscle homeostasis by decreasing or eliminating these effects. The goal of this revi-
ew article is to give current knowledge on the causes of DOX-induced skeletal muscle atrophy, the basic processes involved in mitochondrial dysfunc-
tion caused by DOX, and the effects of exercise on DOX-induced skeletal muscle atrophy.
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6z

Bircok dokuda birikmesi nedeniyle, Doksorubisin (DOX) sitotoksik yan etkilere neden olan bir kemoterapétiktir. DOX'un iskelet kasi atrofisi Uzerinde
onemli bir etkiye sahip oldugu yaygin olarak bilinmektedir. Bu etkilerden en dikkat ¢gekeni DOX'un neden oldugu mitokondriyal fonksiyon bozuklugunun
iskelet kasi atrofisini nasil tetikledigidir. Egzersiz bu etkileri azaltarak veya ortadan kaldirarak kas homeostazisinin korunmasina yardm eden bir tedavi
yaklasimidir. Bu derleme makalenin amaci, DOX'a bagli iskelet kasi atrofisinin nedenleri, DOX yoluyla mitokondriyal disfonksiyondaki temel mekanizma-
lar ve DOX'a bagli iskelet kasi atrofisinde egzersizin etkileri hakkinda gtincel bilgiler saglamaktir.

Anahtar Sézciikler: Doksorubisin, iskelet kasi atrofisi, mitokondri, egzersiz

INTRODUCTION

A cytotoxic drug known as doxorubicin (DOX) serves for the
treatment of specific types of cancer (1). DOX is an extre-
mely effective treatment, but it has several side effects, inc-
luding skeletal muscle atrophy (2, 3). The DOX affects the
quality of life for cancer patients because it promotes skele-
tal muscle atrophy and fatigue (4).

It has been demonstrated that DOX treatment induces mi-
tochondria to produce more reactive oxygen species (ROS)
(5, 6). Oxidative damage to skeletal muscle serves as a sti-
mulus that accelerates the degradation of muscle by activa-
ting key proteolytic systems (7, 8). Skeletal muscle atrophy
is triggered by these negative molecular mechanisms. DOX
appears to affect muscular function by reducing athletic
performance and causing muscle fatigue (9).

Skeletal muscle dysfunction following DOX treatment is a
challenging issue to manage, exercise may be beneficial in
reducing the negative effects of DOX on the skeletal musc-
les (10).

This review article will discuss the adverse effects of DOX
on skeletal muscle as well as explain how mitochondrial
dysfunction generates these effects and the evidence that
exercise can counteract these effects.

Doxorubicin, chemical structure, and mechanism

Doxorubicin HCI, the first anticancer drug, has been clini-
cally demonstrated to be effective against some malignanci-
es, including solid cancers, leukemias, and lymphomas
(11). The molecular formula for DOX is C27H29NO11HCI,
with a molecular weight of 579,98 g/mol. The drug is an
aglyconic and sugar-containing class I nonselective anth-
racycline. The aglycone is formed up of a tetracyclic ring
with adjacent quinine-hydroquinone groups, a short side
chain containing a methoxy substituent, and a carbonyl
group. One of the rings has a glycosidic link binding the su-
gar component to it (12, 13).

Certain mechanisms, including topoisomerase II (TOP2B)
inhibition, cytochrome C release from mitochondria, and
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the formation of ROS leading to oxidative stress, have been
associated with cytotoxic effects of DOX (14, 15).

DOX intercalates with the DNA, preventing the macromole-
cular production process (16). TOP2B poisoning induces
DNA damage because cancer cells are more susceptible to
DNA breaks than healthy ones (17, 18).

Following the splitting of the DNA chain for replication by
TOP2B, DOX stabilizes the structure by inhibiting the DNA
double helix and stopping replication activity (19). Another
way that DOX acts is to produce free radicals, which may
damage DNA and cell membrane lipids and proteins (11,
20). This can give rise to oxidative stress, which may elimi-
nate tumor cells through the process of apoptosis (17, 21).

Doxorubicin-induced skeletal muscle atrophy

Skeletal muscles, which account for over 40% of a healthy
person's body weight, are highly dynamic and flexible tis-
sues that can change at the cellular and molecular levels in
response to various stressors (22). Skeletal muscle protein
turnover is a metabolic process that balances protein synt-
hesis/degradation and maintains skeletal muscle function
and mass (23). Skeletal muscle atrophy is characterized by
a decrease in protein content, fiber diameter, strength pro-
duction, and resistance to fatigue. Skeletal muscle atrophy
is the loss of skeletal muscle mass as a result of increased
myofibrillar protein degradation and decreased protein
synthesis (24). Skeletal muscle atrophy is an outcome of
multiple diseases, including cancer, neuromuscular disor-
ders, myopathy, and inflammatory diseases (25). DOX, a
cancer treatment drug, promotes skeletal muscle atrophy,
which acts a crucial role in the adverse effects of a variety
of diseases or disorders.

Different cancers have been treated with DOX (1, 26). DOX is
a highly successful chemotherapy, but it has several adver-
se effects, including skeletal muscle atrophy, and tiredness
(2, 3, 27, 28). DOX treatment impairs the quality of life for
cancer patients by causing skeletal muscle weakness and
exhaustion (4). Because of its cytotoxic activity, it has been
proven in several human and animal studies to initiate ske-
letal muscle atrophy. Mitochondrial and contractile dys-
function are triggered by cellular and molecular processes
in skeletal muscle damage related to the activation of prote-
olytic and apoptotic signaling pathways by DOX-induced
oxidative stress (29, 30).

DOX and paclitaxel, two drugs frequently administered to
breast cancer patients, decreased myosin expression and
promoted mitochondrial degradation via ROS (3). Muscle
dysfunction and atrophy have also been associated with
DOX treatment, which is used to treat limb sarcoma tumors

(31).
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Skeletal muscle functionality gradually deteriorated in five
days following DOX administration and all muscle tissues
were dysfunctional, vascular activity quickly reduced, and
DOX concentration was highest in the heart (32).

DOX dramatically decreased muscular tissue weights and
cross-sectional area (CSA) of muscle. (33). A recent study
found that prolonged DOX treatment significantly diminis-
hed body weight and gastrocnemius mass (34). 10, 12.5, or
15 mg/kg DOX applications reduced maximal contraction
force in the soleus muscle by 45%, 60%, and 74%, respecti-
vely (35). Skeletal muscle and cardiac wasting were nearly
equal 4 weeks after the treatment with a 24 mg/kg dose of
DOX (36). The fiber CSA of the soleus, plantaris, and diaph-
ragm muscles significantly was decreased after receiving a
single dose of DOX (20 mg/kg) (2). DOX diminished soleus
weight by around 15% and cancer chemotherapy's combi-
ned effects led to a similar decline in muscle mass and CSA
(6). DOX treatment significantly lowered muscle fiber CSA
by 17% according to a meta-analysis (37). 15 mg/kg DOX in-
jection was administered intraperitoneally, and the CSA of
EDL muscle was reduced (38).

TOP2B overexpression contributes to DOX-induced myotoxi-
city. DOX significantly deteriorated the muscle weight of
the gastrocnemius and specific clinical characteristics (35).
Additionally, this study found that DOX reduced BECN1
(autophagy marker) expression but did not affect myogenic
regulatory factor (MRF) activity (39).

In in vitro and in vivo studies, DOX decreased soluble gu-
anylate cyclase (sGC) action, and there was a correlation
between sGC function and CSA of skeletal muscle activating
the ubiquitin-proteasome system (UPS) and impairing pro-
tein synthesis (40). Additionally, cells exposed to DOX sho-
wed immunostained responses, which were indicating oxi-
dative stress. The essential differentiation was attributed to
the intracellular density of the identified mitochondrial re-
activity, increased MAFbx expression, and atrophic chan-
ges due to Forkhead box 03 (Fox03) (41). DOX significantly
decreased muscular function in mice, and upregulated pro-
inflammatory cytokines and inflammatory M1 macrophages

(42).
Doxorubicin and mitochondrial dysfunction

DOX-induced mitochondrial damage induces cellular mal-
function (43, 44). According to studies, DOX treatment has
been shown to increase the generation of mitochondrial
ROS (5, 6). Cardiolipin, an inner mitochondrial membrane
phospholipid, has been associated with the generation of
ROS after mitochondrial failure (45). DOX produces cardioli-
pin dysfunction, resulting in increased ROS generation
(46). When DOX is localized to the inner mitochondrial
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membrane, it is reduced by nicotinamide adenine dinucle-
otide (NADH)-dehydrogenase, leading to the generation of
superoxide radicals, which in turn increases ROS producti-
on and mitochondrial dysfunction (2). ROS generation trig-
gers oxidative damage in skeletal muscle.

When ROS levels increase, the mitochondrial structure is
seriously damaged and resulted in apoptosis and reduced
contraction, which compromises cardiac and respiratory
performance (47, 48). ROS increases protein breakdown in
skeletal muscle by activating caspase-3 and the UPS. UPS is
a different mechanism related to DOX-induced atrophy.
Furthermore, autophagy has been hypothesized as a poten-
tial mechanism for DOX-induced protein breakdown (49,
50). Min et al. reported that a single dose of DOX (20 mg/kg)
lowered mitochondrial respiration while enhancing mitoc-
hondrial uncoupling (2). DOX administration resulted in
substantial increases in mitochondrial ROS, 4-hydroxy-2-
nonenal (4-HNE) modified proteins, calpain activation, and
caspase-3 activity in skeletal and cardiac muscles (2).

DOX affects complex I and complex II mitochondrial respi-
ration in skeletal muscle (51). DOX improved skeletal musc-
le mitochondrial H,0,-emitting potential and oxidative va-
riations of myofibrillar proteins (52). Following DOX treat-
ment, the function of the whole muscle is negatively affec-
ted by both elevated reactive protein carbonyl levels and
post-translational modifications of proteins induced by inc-
reased cellular oxidants (6).

DOX administration (15 mg/kg) significantly enhanced the
TUNEL apoptotic index, the protein abundance of Bcl-
3/Bax, and the ratio of LC3 II to LC3 I in skeletal muscle
(49). DOX injection promoted autophagy marker expression
in type I soleus muscle, and the autophagosome initiation
protein, Beclin1 (53, 54). DOX increased Beclinit mRNA and
protein levels in soleus muscles (53).

DOX treatment (6 mg/kg, four doses) reduced body weight
and muscle mass, and elevated REDD1 mRNA expression
(33). DOX treatment and oxidative stress were recently re-
ported to increase REDD1 mRNA expression in skeletal
muscle (11, 55).

Peroxisome proliferator-activated receptor-gamma coacti-
vator (PGC-1) controls angioplasty, mitochondrial biogene-
sis, and muscular growth (56). DOX diminished PGC-1
mRNA levels in skeletal muscle, while they tended to incre-
ase in the heart (36).

Effects of exercise on doxorubicin-induced skeletal
muscle atrophy

It is well recognized that individuals with a variety of pat-
hological conditions, such as cardiovascular diseases, obe-
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Doxorubicin-dependent muscle atrophy and exercisee

sity, type 2 diabetes, sarcopenia, and some forms of cancer,
can benefit significantly from regular exercise (24, 57).

Combs and colleagues demonstrated that exercise training
offers therapeutic advantages that reduce DOX toxicity (58).

It has been shown that endurance training decreased DOX-
induced oxidative damage and the induction of proteolytic
mechanisms in skeletal muscle atrophy (59). Exercise has
been associated with slow-twitch oxidative muscles compa-
red to fast-twitch glycolytic, but DOX-induced skeletal
muscle atrophy emerges independently of skeletal muscles
with different fiber types (type I or type II muscles) (60).
One study demonstrated that the chronic DOX usage in
combination with interval training was also sufficient to
prevent soleus muscle atrophy (61). Therefore, exercise tra-
ining before or at the beginning of DOX treatment may pre-
vent skeletal muscle atrophy and weakening. Exercise inc-
reases the activity of endogenous antioxidant enzymes, oxi-
dant buffering capacity and prevents DOX damage (62). In
one study, the combination of exercise and DOX treatment
enhanced antioxidant levels in heart and liver tissues (63).
PGC 1 significantly lowered in gastrocnemius muscle under
atrophic conditions, and increased expression of PGC 1 in-
duced by genetic manipulation was found to suppress Fo-
x03, reducing type II fiber atrophy in the tibialis anterior
muscle. (64).

Exercise diminishes mitochondrial dysfunction, oxidative
stress, and protease stimulation, which in turn inhibits di-
aphragm fiber atrophy (65).

Exercise capacity can be affected by changes in musculos-
keletal function, and patients exposed to DOX showed gre-
ater exercise intolerance and decreased aerobic capacity
(66). Through activation of AMP-activated protein kinase
(AMPK), aerobic exercise in DOX treatment enhanced maxi-
mum aerobic capacity without affecting muscle mass or fi-
ber CSA (34). In DOX-treated rats, exercise diminished MuR-
F1 signaling but not Atrogin-1/MAFbx signaling via preser-
ving mitochondrial respiratory function and redox balance
(67). Exercise enhanced regeneration signaling through the
MRF response, although DOX therapy increased soleus
MREF function (68). The a-actinin (ACTN) protein was noti-
ceably affected by DOX, but exercise training appeared to
restore it. FOXO3a protein expression was elevated by DOX-
induced myotoxicity and was precisely regulated by exerci-
se (69). In addition to protecting muscle against oxidative
stress induced by DOX and reducing the expression of
autophagy genes, endurance exercise enhances antioxidant
levels (53). Kwon et al. reported that exercise increased cit-
rate synthase levels, autophagy markers (LC3-I/II, LAMP,
etc.), and improved muscle regeneration (MYOD) in chronic
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DOX-induced skeletal muscle atrophy (39). However, the in-
teresting finding of this study was that both DOX treatment
and exercise were not associated with the AMPK or
AKT/mTOR signaling pathways (39). Exercise reduced le-
vels of both carbonyl and the 4-HNE, demonstrating protec-
tion against skeletal muscle atrophy caused by DOX (50).
Exercise prevents skeletal muscle atrophy when initiated
before or at the beginning of DOX administration.

CONCLUSION

Since it has been proposed that the medication produces
DOX-induced skeletal muscle atrophy, it is critical to deter-
mine a preventive approach. One of these protective bene-
fits is exercise, which lowers the side effects of chemothe-
rapy in the setting of muscle physiology. Future research
should investigate the combination of multiple treatments
and exercise.
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